Telegram Group & Telegram Channel
Causal Inference - как делать правильные выводы из данных

Наверное, вы не раз слышали о том, что корреляция не доказывает причинно-следственную связь.
Простых иллюстраций в реальной жизни много - например, сон в уличной обуви коррелирует с головной болью на следующее утро, но это не значит, что ботинки влияют на мозг 😁

Когда вы читаете о каких-то результатах исследований (особенно в новостях), в них могут быть ошибки как статистического характера, так и неправильная интерпретация результатов (учёные могут ошибаться или обманывать, шок).

Этот феномен играет роль и в ML, например, в рекомендательных системах. Часть алгоритмов уязвима к ситуации, когда некоторые объекты в данных встречаются сильно чаще других, у них больше положительных откликов, и алгоритмы начинают выбирать популярные объекты для пользователя просто из-за их популярности, а это плохо.

Вы можете очень сильно прокачать своё критическое мышление и способность делать правильные выводы, посмотрев хотя бы треть этого прекрасного плейлиста про Сausal Inference. Это короткие видео, в которых автор подробно объясняет основы этой области. Требуется базовая грамотность в теории вероятностей. Добавляйте себе в закладки, запишите просмотр в цели на 2023 ✍️

Посмотрев, вы поймёте, почему надёжный вывод можно сделать только в условиях эксперимента с фактором случайности, в чём математический смысл "поправок" в исследованиях, и почему даже с ними вывод не становится надёжным.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/51
Create:
Last Update:

Causal Inference - как делать правильные выводы из данных

Наверное, вы не раз слышали о том, что корреляция не доказывает причинно-следственную связь.
Простых иллюстраций в реальной жизни много - например, сон в уличной обуви коррелирует с головной болью на следующее утро, но это не значит, что ботинки влияют на мозг 😁

Когда вы читаете о каких-то результатах исследований (особенно в новостях), в них могут быть ошибки как статистического характера, так и неправильная интерпретация результатов (учёные могут ошибаться или обманывать, шок).

Этот феномен играет роль и в ML, например, в рекомендательных системах. Часть алгоритмов уязвима к ситуации, когда некоторые объекты в данных встречаются сильно чаще других, у них больше положительных откликов, и алгоритмы начинают выбирать популярные объекты для пользователя просто из-за их популярности, а это плохо.

Вы можете очень сильно прокачать своё критическое мышление и способность делать правильные выводы, посмотрев хотя бы треть этого прекрасного плейлиста про Сausal Inference. Это короткие видео, в которых автор подробно объясняет основы этой области. Требуется базовая грамотность в теории вероятностей. Добавляйте себе в закладки, запишите просмотр в цели на 2023 ✍️

Посмотрев, вы поймёте, почему надёжный вывод можно сделать только в условиях эксперимента с фактором случайности, в чём математический смысл "поправок" в исследованиях, и почему даже с ними вывод не становится надёжным.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/51

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Knowledge Accumulator from cn


Telegram Knowledge Accumulator
FROM USA